US009438271B2

a2 United States Patent

Itani et al.

US 9,438,271 B2
Sep. 6, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

DATA COMPRESSION APPARATUS AND
METHOD

Applicant: FUJITSU LIMITED, Kawasaki-shi,
Kanagawa (JP)

Inventors: Noriko Itani, Hadano (JP); Takumi

Maruyama, Yokohama (JP); Ryuji

Kan, Yokohama (JP); Shigeki Itou,

Kawasaki (JP); Yasuhiko Nakano,

Kawasaki (IP)

Assignee: FUJITSU LIMITED, Kawasaki (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 15/053,022

Filed: Feb. 25, 2016

Prior Publication Data

US 2016/0173127 Al Jun. 16, 2016

Related U.S. Application Data

Continuation of application
PCT/IP2013/073353, filed on Aug. 30, 2013.

No.

Int. CL.

HO3M 7/30 (2006.01)

U.S. CL

CPC HO3M 7/6011 (2013.01); HO3M 7/3086

(2013.01)
Field of Classification Search
CPC .. HO3M 7/60; HO3M 7/3084; HO3M 7/3086;
HO3M 7/3088; HO3M 7/6011; HO3M 7/30
USPC 341/51, 87
See application file for complete search history.

ORIGINAL DATA

(56) References Cited

U.S. PATENT DOCUMENTS

5,652,878 A 7/1997 Craft
6,563,956 B1* 5/2003 Satoh HO3M 7/3084
341/51
7,215,259 B2* 5/2007 Kerber HO3M 7/3084
341/106

(Continued)

FOREIGN PATENT DOCUMENTS

Jp 5-233212 9/1993
Jp 5-241776 9/1993
(Continued)

OTHER PUBLICATIONS

Fiala et al., “Data Compression with Finite Windows”, Communi-
cations of the ACM, Apr. 1989, vol. 32 No. 4, pp. 490-505 (16
pages).

(Continued)

Primary Examiner — Khai M Nguyen
(74) Attorney, Agent, or Firm — Fujitsu Patent Center

(57) ABSTRACT

A data compression apparatus includes a memory and a
processor. The processor extracts a second character string
as a matching string from a character string after a first
character string in a character string of data before com-
pression that is stored in the memory, the second character
string being identical with the first character string, and
identifies a length of the matching string, and a relative
position indicating how many addresses the first character
string precedes the second character string by. The processor
extracts a third character string having a length that is less
than the relative position from the extracted second charac-
ter string. The processor encodes a length of the third
character string. The processor encodes the relative position.

8 Claims, 22 Drawing Sheets

COMPRESSED DATA

Ialaaaaaaaaab{ {1,6](9,1){1,[’3}
carton= 1 RO RA RG]
PP PLB) P8
blab|ab|ab|ab 2,ab} (10, 2) {1,
carton= 2 tla a‘i,a - c| {2,2b] () {10l
P POPQ P
carton= 3 'abclabc abe abcld‘ {3, abe} (8, 3) {1, d}
Py P2
carton= 4 [abod | abod [abos | abod |e] {4, abed) (12, 4) {1, €}
) Pl PR
carton= 7 |abodsfs |abodefe | abodefe fn| {7, abcdefe} (14, 7) {1, h]
- P(l)
carton= 8 !abcdefghlabcdefgh abcdefghli| {8, abcdefgh} (16, 8) {1, i}

P(1)

US 9,438,271 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2006/0267806 Al
2012/0130965 Al*

11/2006 Hirose
5/2012 Oh ..coovevvrei HO3M 7/3088
707/693

FOREIGN PATENT DOCUMENTS

JP 2000-188692 7/2000
JP 2003-264703 9/2003
JP 2006-332982 12/2006

OTHER PUBLICATIONS

International Search Report, mailed in connection with PCT/
JP2013/073353 and mailed Oct. 22, 2013 (2 pages).

Khalid Sayood: “Introduction to data compression”, 1996, Morgan
Kaufmann, XP002759445, pp. 100-105.

Wikipedia: “LZ77 and LZ78”, Internet article, Jun. 26, 2013,
XP002759446, Retrieved from the Internet: URL:https:/
en,wikipedia.org/w/index/php?title=L.Z77 and LZ78
&oldid=561638336 [retrieved on Jul. 4, 2016].

EESR—The Extended European Seach Report dated Jul. 19, 2016
for corresponding European Patent Application No. 13892176.2.

* cited by examiner

US 9,438,271 B2

Sheet 1 of 22

Sep. 6, 2016

U.S. Patent

L "©1T14

{ONTYLS ¥310VHYHO ONTHOLVE-NON 'HIBNIT ONIHOLYM-NON} :ONIHOLVE-NON
(NOILISOd ONIHOLVH "HIDNAT ONIHOLVW) :DNIMIS DNIHOLYMW

gz ‘9) (8P U0 !SS8IdWOD vivd
AN VR Y A.ﬂ 8) {ep f w,p qISSTHANON
} {
«—— || ey g 18 > >
.. | {uto|t|sis|aj4|d|wjo|ol ds wmﬁ diwjo|ofs|p|"lujo]i|sis|e]ildiu|olo Y1iva

TYNIDIH0

1R RSN ANN NN TATARATATA TATAAAVAVA T I WAR I RN AR S FA NS NI m#w L9 S¥E L

\]
NOTLIOFYIO QUYMNOS ﬁl.g
NI S3SSI™aAaY
bl G3L¥007 Ad0D

NOILO3410 QUYMICA
NI S3S534aay
€¢ (41v¥d07 AdO3

US 9,438,271 B2

Sheet 2 of 22

Sep. 6, 2016

U.S. Patent

¢ ©O14

J - ¥344ng 1nd1no
1
A 4
¥3009NT DNIYLS 43000NT HIONTT ¥3000N3 ¥3000N3
BNIHOLYH-NON ONIHOLYH-NON NOI.LISOd BNTHOLYA H1DN3T BNTHOLYH
) \1l\ 4 A . / 4 /
9 gl 1 el
LIND ONIHOYYIS
| ~—ONINLS ONIHOLYH
&

N

s

b7

344N 1NdN]

A
e
0l

U.S. Patent Sep. 6, 2016

(" START)

Sheet 3 of 22

US 9,438,271 B2

”)
&

h

SEARCH FOR MATCHING STRING

$102
HAS \‘:i;\\

<:::MATCHING STRING BEEN > N0

S112

N DETECTED?//,/

¥ /

‘\r/Eg

v
™~ S104

IS IMMEDIATELY

EXTRACT LENGTH AND
CHARACTER STRING
AT/FROM WHICH NO

MATCHING STRINGS HAVE
BEEN DETEGTED

PRECEDING STRING
A NON-MATCHING
STRING?

"YES

¥y

!

ENCODE “NON-MATCHING STRING”

5106

»

¥

ENCODE "MATCHING STRING”

| _s108

T~ PROCESSED? ,////’
\/

iYES
(=)

FI1G. 3

$110
NO ,,///////QRVE AL[\\\\\(“/
PORTIONS OF DATA BEEN

US 9,438,271 B2

Sheet 4 of 22

Sep. 6, 2016

U.S. Patent

{171} (891) {y8}epoqe '8}

Y 1} (L v1) {348poge '/}

{81} (7 ¢b) {poge 'y}

{p°11 (g '6) {oge ¢}

{01} (¢"ob) {qe ¢}

a1 ae) (el
V1V¥Q Q3SSIAdN0D

Y 914

(1d

LAY

ysjepoge |ydjgepoqeygysiepoge

(1)d

A
Y

Yy 8ispoge dlepoge g §49poge
(¢)d OF!
£\ R s o
sy poqe | poge | poge g poqE
€)d (d
e o]
pj oqej oge| oqed oge
#xd€)d @d (1)d
Y R

sf{qe|qe|qe|qgel]qge

(8)d (9:d (n)d (@)d
7 A 5

®yd| (LG died|(1)d

<

qie|eig|B|R BB B

Yiva TYNIDIH0

g =U01.BD

[=u01.ed

¥ =U01.4BD

¢ =U07.4e9

7 =U031.Bo

| =U03.B0

US 9,438,271 B2

Sheet 5 of 22

Sep. 6, 2016

U.S. Patent

g 914
.= B
ma
o ~ ssI008d T o

N334 VIVQ 40 SNO11¥0d TV __-

przg” T MH

X

Frap’d

LINTYLS BNTHOLVI-NON.,

SS3ddi004d
3
ATAS
LHIONAT ONTHO LYW-NON..
55340930
s Fy
01¢s

il

INIYLS ONIHOLYW 40

NOILISOd DNILYVLS WOoYd
SLINA JFLAE~X NI HIBNA1
ONIHOLYIW BNIAYH BNIMIS Ad0O

NOILVNILSH0 AdDO
dVI43IA0 10N S30Q J3¥N0S AdOD
1YHL AVM ¥ HOOS NI NOILISOd
ONTHOLYW HOH4 Y3QU0 NI HI9NIT

90¢s

sl

——ZNOLLYNI LS4
<7 4d00 dYH3A0 30MN0S
07 00 $300

vozs

/.N\\

ONTHOLVI ONIAVH DNIYLS AdOO

&

L8078

xxx\ ON

LINTYLS wz~x09<x 40

NOILISOd ONILYVIS,

GNY HIDONJT ONIHOLVW, Qvdd

\.\\
4068

0028~

sl

L ONITNLS QZEQEE//./

e

4

3
<+

(

LS)

U.S. Patent Sep. 6, 2016

COPY LOCATED 1 ADDRESS
IN FORWARD DIRECTION

Sheet 6 of 22

US

Lo

9,438,271 B2

't 2 3\45 6 7 8 94011

ORIGINAL DATA

a

(Y

a

a

a

a

a

N

\

a

a

a

aj.

N

@10 ..

COMPRESSED DATA

A 4

{1, a}

FIG. 6A

U.S. Patent Sep. 6, 2016 Sheet 7 of 22 US 9,438,271 B2

X

IR s
g

5 6 7 8 9 10 N

FI1G. 6B

US 9,438,271 B2

Sheet 8 of 22

Sep. 6, 2016

U.S. Patent

L D14

1777

444404 1ndino

i

d4000NT ONIYLS
ONTHILVI-NON

d3000N3 HIBNA
ONTHOLVI-NON

@N F-

sz]

LIND ONIAIALG

43009N3 ¥300ONT
NOTLI1SOd ONIHOLYM HIONI 1 ONIHOLYN
FS B
gz gz

g7

ONIYLS DNIHOLVH
4

%

740

1IN ONTHOUVIS

ONIYLS ONIHOLVH
4

-y

127

43449 INdNI

/

0¢

U.S. Patent Sep. 6, 2016

Sheet 9 of 22

US 9,438,271 B2

SEARCH FOR WATCHING ~1._~3300
CHARACTER STRING
CHARAH({\TSERM%TTCRHI NNGG peen >N 5304
\\\\\\\\\?FTECTED? e I
- COUNT LENGTH AT WHICH
TTYES NO MATCHING CHARACTER
5306 | STRINGS HAVE BEEN
DIVIDE MATCHING DETECTED
CHARAGTER STRING

/I TSK\ S308

MMEDIATELY <
NO " PRECEDING STRING A
e _NONJATCHING -
- STRING? -

YES

\\

-

ENCODE “NON-MATCHING STRING”

8310

B
e

X

ENCODE "MATCHING STRING”

8312

v

-

e

N0 L

T

L
~BEEN PROCESSED? —

YES
™

END)

FIG.

3314
’////;AVE\\\\\\ ~

PORTIONS OF DATA ™~

8

U.S. Patent Sep. 6, 2016 Sheet 10 of 22 US 9,438,271 B2

{ START /)

_—"MATCHING . NO

“—_STRING'? _—
e

YES
$402
>4 5406

READ “MATCHING LENGTH” > =

. DECOMPRESS
AND "STARTING POSITION NON 5
OF WAToHING. STRING” NON-HATCHING LENGTH

S404 $408
¥ g L _7
COPY AND QUTPUT STRING . DEGOMPRESS
HAVING MATCHING LENGTH NON*MATCHiNG STRING

IN X-BYTE UNITS FROM
MATCHING POSITION

»
d
i

‘//\

Y e
NO ™~ -~

BEEN PROCESSED?
\ /""/
. /
YES

END

A

FI1G. 9

U.S. Patent

Sep. 6, 2016 Sheet 11 of 22

START D

US 9,438,271 B2

RESET CURRENT POSITION
AND NON-MATCHING LENGTH
pcur =0, n_len =0

8500

S528

Folegt
b s 3

v

SEARCH FOR MATCHING STRING,
AND OBTAIN len AND offset

8502

- T~ ___S504

eyl e
NO " HAS MATCHING STRING ——~__

T~~~ BEEN DETECTED?/f/,ff””/

—— o

n_len ++
p_cur ++

\lﬁ{g 8506

HEAD POSITION ADJUSTING PROCESS

1 /f//8508

MATCHING STRING DIVIDING PROCESS

v

8510

RESET FIRST NUMBER OF DIVIDED STRING
AND NON-MATCHING LENGTH
fnum=20 n_tlen2 =0

Y P

8512

MATCHING LENGTH ADJUSTING PROGESS

®

FIG. 1T0A

U.S. Patent Sep. 6, 2016 Sheet 12 of 22

(}?}

Y
— 8514
<:ij//’?§/NoNuMATCH1NG NO

US 9,438,271 B2

LENGTH 07 -
~._ h_len == O?/// $516
‘\\/'/ v f‘j
YES FNCODE NON-MATCHING
STRING,

AND ENCODE n_len
AND InBuf[(p_cur-n_len)
< . {p_cur-1)1]

y

Y

518~

f num >
e_num?

NO >

$524,

\“‘\ v \/'/
ENCODE MATCHING | TES

STRING, AND ENGODE
A lenTf num] AND

A offset[f_num]
5520
i o
oy n_len =
S526. f_num++‘}§ n_len2

J p_cur += len
v

P
_HAVE ALL

<~ PORTIONS OF DATA -, NO
“~._BEEN PROCESSED? —
~ -

~ -

&

(&)
FIG. 10B

U.S. Patent Sep. 6, 2016 Sheet 13 of 22 US 9,438,271 B2

N
©

H

P

e

07

-

\\//

YES

YES
7 $524

1S NON-MATCHING ™~ No

LENGTH
<\\\\\\\\nmlen =07 _~
s , 5526

/

ENCODE NON-MATCHING STRING,
AND ENCODE n_len
AND [nBufl (p_cur-n_len)..
(p_cur-1]

A 4

END

InBuf0. . N] N+1-BYTE NON-COMPRESSED DATA

p_cur GURRENT POSITION
n_len NON-MATCHING LENGTH
len, offset MATCHING LENGTH AND MATCHING

POSITION (RELATIVE POSITION) OF MATCHING

STRING
f_num FIRST NUMBER OF DIVIDED MATCHING STRING

e_num LAST NUMBER OF DIVIDED MATCHING STRING

FI1G. 10C

U.S. Patent

Sep. 6, 2016 Sheet 14 of 22 US 9,438,271 B2

START HEADING POSITION
ADJUSTING PROCESS

)
~
4

3

i = offset /5600
S602
e 5604
<7 D= N'?\k\f NO Y,
m‘\ / % f’.

““IYES 8608 | i 4= offset

n len += (i - offset)
p_cur += (i - offset)
len —= (i - offset)

offset = i

v

(iP_NEND\-\\ p_cur GURRENT POSITION

) n_len NON-MATCHING LENGTH

len. offset MATCHING LENGTH AND
MATCHING POSITION (RELATIVE POSITION)
OF MATCHING STRING

FI1G. 11

US 9,438,271 B2

Sheet 15 of 22

Sep. 6, 2016

U.S. Patent

Vel 914

| L an3

AN
7% 195140 = 1854J0
108140 =— gue| - -
+HINUTe ¢ual = [UWnu sjus| y
108JJ0 = [wnu s]ue|y 1984J0 = [Wnu 8]3esijo y
108440 = [WNUT8]1884407Y
~ 1 vors” SR
90LS P \&Ms\
=T eUB| =C 195440 YO X < 388440
OZ o e
208" ;;:qﬂxxxx\\
4 ue| = zue| ‘g = wnu e
00L8” %

P

"~ $53004d DNIGIALG
ONTNLS ONIHOLVW LMVIS

U.S. Patent Sep. 6, 2016

Sheet 16 of 22 US 9,438,271 B2

7~ START MATCHING STRING O\
_ DIVIDING PROGESS
v
n = (len + offset ~1) / offset ,JSSOO
i =0
~S802
~__ Mo
Sl n<=17 e
— S804
YES S
88060 n=n /2
P[i] =n
fen? = Qe_num = 0 1+t
{
S808 Y.
e NO
{}\f/i? T . 5812
T?Es -
3810‘\¥ ¥ tmp = P[i] * offset
A lenle num] = tmp
A_lenle_num] = len — len2 A offsetle_num] = tmp
A _offset[e_num] = len? += tmp
(PIO]+1) *offset e_num++
!

A4

END

FI1G.

len, offset MATCHING LENGTH AND MATCHING
POSITION (RELATIVE POSITION) OF MATCHING STRING
A_len, A_offset MATCHING LENGTH AND MATCHING
POSITION OF DIVIDED MATCHING STRING

f_num FIRST NUMBER OF DIVIDED MATCHING STRING
e_num LAST NUMBER OF DIVIDED MATCHING STRING

128

US 9,438,271 B2

Sheet 17 of 22

Sep. 6, 2016

U.S. Patent

el

ONIYLS DNIHOLVIW (30IAIQ 40 YAGWNN 1Sy wnu™e
ONIYLS ONIHOLVI (3QTAIQ 40 YIGWNN LSHId wnuy
ONIYLS BNIHOLVW d3QIAIQ 40 NOILISOd

ONIHOLYW ONY HLDNIT ONIHOLWW 3esijoy ‘us|y
ONTHLS ONTHOLVI 40 (NOLLISOd JAILYT3Y) NOILISOd

‘014

DNIHOLYW ONY HIBNIT ONIHOLYW 31esijo ‘'us|
H1ONTT DNIHOLYW-NON gusju ‘us| u
NOILISOd LNIH¥no Jnod

—{N e S3A
[|-wnuajus| y =+ guaj

SUNUT I INUTE 4O

906S N =< []-tnu ®4:m~ <\\\\\\\\
AR
7065 N
A
_
++N 4
[unu™§ ue |y =+ usiu S3A -
Iy \\\\\\ z.:e.«/.!e.i
Nmmw ﬁs|||||ﬂmw||hrfz Lo = [T jus)Y

Smm\k Ty

Laif

SSI00Md ONLLSAPQY
HIONIT DNIHOLVH LUviS /

US 9,438,271 B2

Sheet 18 of 22

Sep. 6, 2016

U.S. Patent

{171} (91°0) (89 {usepoqe ‘g}

{41} (PL°9) (L°L) {84epoge ']

1@ vy {poge 1)

P 1} (99 (£ ¢ {oae ‘g)

P11 e &'y @2 {98 7]

CRIRCEARCA NIRRT

Y1vd (3SS3UdN00

vl

01 4

gi1epoqe lysiepogeiys jepoge

/ B &

Y iepoge dlepoqeg 8lepoqe

sf oqe | poge | poqge § poqge

pf oqef oge| oqe osm_

€)d (Ld

R amen

ofqejgefge|qe Qm~

{Od (£)d1d

A -

(jieieg|ei2 BB |ElBiREL

V1va TYNIDIY0

g =U074ED

[=U0}.eo

y =U014eo

£ =U034B0

7 =U01.4eD

| =Uo14eD

US 9,438,271 B2

Sheet 19 of 22

Sep. 6, 2016

U.S. Patent

1P ©ld
¢=u OF . ,
(111 (91°0) (8°8) (uByepode 8] [11 3repeae | 4ssepoas] ussopoqe |8 =Uoaieo
> (1) . w
Yy @9 (L) {81spoge /] 4l 1epoqe [iepoge|aiepoge| [=U03JED
€=U {I)d -
118D W) {pode 'y} ol oqe | poge | poqe | poqe p =l0}Je0
£=u Or
P 119G (€ {oge g} PR ae [oqe goqe joqe ¢ =U074B9
g = u @d md
P9 &0 @7 {9 T 3 3 B B £ B ¢ =U03.es
OF
6=u wa@dl
gHuHEgaEea@hanE i el M M R | =uojJeo
NOTINJANT IN3S3Hd YLVa TYNIDTHO

40 V1vd (3SSFANOD

US 9,438,271 B2

Sheet 20 of 22

Sep. 6, 2016

U.S. Patent

{171} (8751) {y84epoge 'g}

U} (wl'9) (L°L) {348poge '/}

{81} (8'8) (¥ ¥ {poge 'y}

P11 (979 (€D {oqe g}

{0711 @87 (7 'y) {geqe 'y}

{qee '¢} (v 'p) {eeee p}

LARJUR(ERRELL LY

g

9

U

L ©14

{d

A

A 4

i
_m giepoge yssespoqef ydjepoqge

[/

= U

(Ld

A
k4

iepoqge giepoqge §40poqe

(bd

E

poqge | poge 1 poge § poqe

{1d

pioge | oge |oge f oqgm

d &id 1d
/ N

A

oflgelqe|qelqgelqgef ge

{)d Lid (tid
<

Jgeie|gieieiBiR|BIRIE

v.ivd TYNI9IHO

g =U0}.ed

[=U07}.4eD

y =U0148D

¢ =Uc1.ieo

7 =U014e0

| =U0]4e0

U.S. Patent Sep. 6, 2016 Sheet 21 of 22 US 9,438,271 B2

ORIGINAL DATA

alaiaf aaa aaa jaib

<P

carton= 1 P{1)
~>garton= 3

ab| ab§ abab aba fc

-
carton= 2 ' P
—carton = 4

abo ahec | abec | ab fd

B e

P
NO ADJUSTMENT BECAUSE carton = 3 > N

FIG.

COMPRESSED DATA OF
PRESENT INVENTION

(3, aaa} (3, 3) (4, 6) {1, b}

{4, ababl (4, 4) (3, 8) {1, ¢}

{3, abc} (3, 3) (5,6) {1, d}

17

US 9,438,271 B2

Sheet 22 of 22

Sep. 6, 2016

U.S. Patent

81

ANIQIW ONIGH003d
F14VACHIY

s)
iy} Vil

RO G-

AN

0Lt

/

491A4d
ONIATHC F01Add
W 143N EdLELEI

AVIdSId

401A3d
1NdNI

911~ DNIQH093Y

H

H

{ H

81| JALNG
NS0 QHVH

WYY

oY

Ndd

o

801 901

g

43iNdiiod —
001

yolL

¢0l

US 9,438,271 B2

1
DATA COMPRESSION APPARATUS AND
METHOD

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation application of Interna-
tional Application PCT/JP2013/073353 filed on Aug. 30,
2013 and designated the U.S., the entire contents of which
are incorporated herein by reference.

The embodiments discussed herein are related to a data
compression apparatus and a method.

BACKGROUND

As a data compression algorithm, the [.Z77 algorithm
published by Abraham Lempel and Jacob Ziv in 1977 is
known. The [.Z77 algorithm is one example of a dictionary
compression scheme, and is also referred to as a sliding
dictionary scheme. In the L.Z77 algorithm, data is encoded
in order from the head. In the sliding dictionary scheme, a
search is performed to determine whether a symbol string
starting at a position of interest has previously appeared.
When the symbol string has previously appeared, the sym-
bol string is replaced with a pointer representing the appear-
ance position and the length of the symbol string. The term
“sliding dictionary scheme” originates from the fact that a
range in which a symbol string is searched for is referred to
as a “sliding window” and that the sliding window is used
for a dictionary.

In the LZ77 algorithm, a data amount is reduced by
replacing a repeatedly appearing data string with the length
and the appearance position of a symbol string that has
previously appeared. In decompression, original data can be
decompressed by copying a symbol string having a match-
ing length from a position where the symbol string has
previously appeared and having a matching length. In addi-
tion, the LZ77 algorithm shows a method for encoding a
length at which no repetition is detected and a symbol string
that does not include any repetition when no repetition is
detected.

Depending on an operating system (OS) of a Central
Processing Unit (CPU), a Single Instruction Multiple Data
(SIMD) instruction whereby plural pieces of data are
handled when a single instruction is issued has been pre-
pared, and data can be copied between memories in 16-byte
or 32-byte units at high speed. When the SIMD instruction
is used in copying processing in decompression, speeding-
up of decompression can be realized.

[Non-Patent Document 1] Fiala, E. and Greene, D. (1989)
“Data compression with finite windows” Communications
of the ACM, 32(4) pp. 490-505

SUMMARY

According to an aspect of the embodiments, a data
compression apparatus includes a processor. The processor
extracts a second character string as a matching string from
a character string after a first character string in a character
string of data before compression, the second character
string being identical with the first character string, and
identifies a length of the matching string, and a relative
position indicating how many addresses the first character
string precedes the second character string by. The processor
extracts a third character string having a length that is less
than the relative position from the extracted second charac-

10

15

20

25

30

35

40

45

50

55

60

65

2

ter string. The processor encodes a length of the third
character string. The processor encodes the relative position.

The object and advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the inven-
tion.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram explaining an outline of the LZ77
algorithm.

FIG. 2 is an exemplary functional block diagram of a data
compression apparatus in a comparative example.

FIG. 3 illustrates a flow of a compression process per-
formed by a data compression apparatus in a comparative
example.

FIG. 4 illustrates examples of original data and com-
pressed data in a comparative example.

FIG. 5 illustrates an example of a flow of a decompression
process in a comparative example.

FIG. 6A illustrates an example of a compression process
performed by a data compression apparatus in a comparative
example.

FIG. 6B illustrates an example of a decompression pro-
cess in a comparative example.

FIG. 7 is an exemplary functional block diagram of a data
compression apparatus according to the embodiments.

FIG. 8 illustrates an example of a flow of a compression
process performed by a data compression apparatus accord-
ing to the embodiments.

FIG. 9 illustrates an example of a flow of a decompression
process according to the embodiments.

FIGS. 10A through 10C illustrate an example of a flow of
a compression process performed by a data compression_
device in examples.

FIG. 11 illustrates an example of a flow of a head position
adjusting process in examples.

FIG. 12A illustrates an example of a flow of a matching
string dividing process in examples.

FIG. 12B illustrates another example of a flow of a
matching string dividing process in examples.

FIG. 13 illustrates an example of a flow of a matching
length adjusting process in examples.

FIG. 14 illustrates an example of division at P(1),
P@3), . .., and P2"-1).

FIG. 15 illustrates an example of division at P(n+2),
P(n+4), . . ., and P(n+2™).

FIG. 16 illustrates another example of division at P(1),
P@3), . .., and P2™"-1).

FIG. 17 illustrates yet another example of division at P(1),
P@3), . .., and P2™"-1).

FIG. 18 illustrates an example of a configuration of a
computer.

DESCRIPTION OF EMBODIMENTS

In the LLZ77 algorithm, the last address of a copy source
character string may be located in a backward direction of
the first address of a copy destination character string.
Hereinafter, this is simply referred to as “a copy source
overlaps a copy destination”. As an example, in a case in
which the same character is repeated so as to generate the
character string “aaaa . . . ”, the addresses of a copy source
character string are “1, 2,3, 4 .. . ”, and the addresses of a

US 9,438,271 B2

3
copy destination character string are “2, 3, 4, Namely,
the copy source character string overlaps the copy destina-
tion character string at addresses “2, 3, 4, ... ”. In such a

case, when decompression is performed, a previously
appearing character string is copied in a procedure of
copying the first byte into the second byte in step 1, and
copying the second byte into the third byte in step 2. In this
case, the process of step 2 is not performed until the process
of step 1 is completed. Stated another way, in the L.Z77
algorithm, a data string can be decompressed by performing
simple copying because a repeatedly appearing data string is
replaced with the length and the appearance position of a
data string that has previously appeared; however, when a
copy source overlaps a copy destination, copying each
individual byte may need to be performed. Consequently,
there is a problem in that whether a copy source overlaps a
copy destination needs to be confirmed first in order to use
high-speed multi-byte copying in decompression, and when
the copy source overlaps the copy destination, a complicated
process for copying each individual byte is needed.

A comparative example is described first, and embodi-
ments are described next, with reference to the drawings.

A data compression apparatus, a method, and a program
using the .Z77 algorithm are described below, but a data
compression scheme is not limited to the [LZ77 algorithm,
and any compression scheme can be employed that reduces
a data amount by replacing a repeatedly appearing data
string with the length and the appearance position of a data
string that has previously appeared.

In the LZ77 algorithm, a repeatedly appearing character
string is searched for, and when the character string appears
a second time or later, the character string is compressed by
replacing the character string with data relating to an appear-
ance position and a length. The appearance position is a
difference in an address between the head positions of a
character string when the character string appears for a
plurality of times and when the character string has previ-
ously appeared, in a case in which the character string
appears a plurality of times.

The following notation rules are used in the description
below.

(Rule 1) A matching string is represented by (matching
length, starting position of matching string).

(Rule 2) A non-matching string is represented by {non-
matching length, non-matching character string}.

The starting position of a matching string represents how
many addresses a character string that is identical with the
matching string precedes the matching string by. The start-
ing position of the matching string is also referred to as a
“matching position” or a “relative position”. The starting
position of the matching string (the relative position) may be
a difference in an address between the head positions of a
character string when the character string appears for a
plurality of times and when the character string has previ-
ously appeared, in a case in which the character string
appears a plurality of times, namely, the length of a relative
distance. As an example, the starting position of a matching
string being “14” may mean that a head position when the
character string appears for a plurality of times is located 14
addresses in a backward direction from a head position when
the character string has previously appeared. The expression
“encode a matching string in a character string of original
data into compressed data in the form of (matching length,
starting position of matching string)” is also used. Similarly,
the expression “encode a non-matching string in a character

25

30

35

40

45

55

4

string of original data into compressed data in the form of
{non-matching length, non-matching character string}” is
also used.

COMPARATIVE EXAMPLE

A comparative example is described below with reference
to FIGS. 1 to 6B. The description below of the comparative
example is also a description of an outline of the LLZ77
algorithm.

FIG. 1 is a diagram explaining an outline of the LZ77
algorithm.

As an example, in data before compression (hereinafter
also referred to simply as “original data™) that is stored at the
1st to 34th addresses illustrated in FIG. 1, the character
string “compression_de” is stored at the Ist to 14th
addresses, the character string “compress” is stored at the
15th to 22nd addresses, “_” (underbar) is stored at the 23rd
address, and the character string “compression” is stored at
the 24th to 34th addresses. “compression_de” stored at the
1st to 14th addresses is a non-matching string, and has a
non-matching length of 14, and therefore “compression_de”
is represented as “{14, compression_de}” in compressed
data. “compress” stored at the 15th to 22nd addresses of the
original data is identical with a character string at the 1st to
8th addresses. “compress” is formed of 8 characters. The
identical character string precedes “compress” by 14
addresses, and therefore the starting position of the matching
string is 14. Accordingly, data at the 15th to 22nd addresses
of the original data is encoded into “(8, 14)” in the com-
pressed data. “_” (underbar) stored at the 23rd address of the
original data has not appeared previously, and therefore “_”
(underbar) is encoded into “{1, _}” in the compressed data.
“compression” stored at the 24th to 34th addresses of the
original data is identical with the character string stored at
the 1st to 8th addresses, and “compress™ is formed of 8
characters. The identical character string precedes “com-
press” by 23 addresses, and therefore the starting position of
the matching string is 23. Accordingly, data at the 24th to
34th addresses of the original data is encoded into “(11, 23)”
in the compressed data.

As described above, the character string of the original
data illustrated in FIG. 1 is represented as “{14, compres-
sion_de} (8, 14){1, _} (11, 23)” in the compressed data.

FIG. 2 is an exemplary functional block diagram of a
compression apparatus that compresses original data by
using the LZ77 algorithm so as to generate compressed data.

A compression apparatus 10 includes an input buffer 11,
a matching string searching unit 12, a matching length
encoder 13, a matching position encoder 14, a non-matching
length encoder 15, a non-matching string encoder 16, and an
output buffer 17.

The input buffer 11 receives data before compression
(original data) as stored at the 1st to 34th addresses illus-
trated in FIG. 1 from outside, and temporarily stores the data
as needed. In the example illustrated in FIG. 1, the original
data is “compression_decompression compression.”.

The matching string searching unit 12 searches whether a
repeatedly appearing character string (a matching string) is
included in a character string of the original data stored in
the input buffer 11, and extracts a repeatedly appearing
character string (matching string). When a matching string is
included, the matching string searching unit 12 identifies the
matching string. In the example illustrated in FIG. 1, for
example, the character strings “compress” and “compres-
sion” appear a plurality of times, and therefore these char-
acter strings are matching strings.

US 9,438,271 B2

5

The matching length encoder 13 extracts the length of the
matching string searched for and extracted by the matching
string searching unit 12, and identifies the first element of
(matching length, starting position of matching string) rep-
resenting the matching string, according to Rule 1. In the
example illustrated in FIG. 1, for example, the character
string “compress” stored at the 15th to 22nd addresses of the
original data is identical with a character string stored at the
1st to 8th addresses, and is formed of 8 characters. Accord-
ingly, the matching length is encoded into “8”.

The matching position encoder 14 detects how many
addresses a character string identical with the matching
string that has been searched for and extracted by the
matching string searching unit 12 precedes the matching
string by, and identifies the second element of (matching
length, starting position of matching string) representing the
matching string, according to Rule 1. In the example illus-
trated in FIG. 1, for example, the character string “com-
press” stored at the 15th to 22nd addresses of the original
data is identical with the character string stored at the 1st to
8th addresses, and the identical character string precedes the
character string “compress” by 14 addresses. Accordingly,
the starting position of the matching string is encoded into
“14” by the matching length encoder 13.

The non-matching length encoder 15 extracts the length
of a non-matching string that has not been extracted as a
matching string by the matching string searching unit 12,
and identifies the first element of {non-matching length,
non-matching character string} representing the non-match-
ing string, according to Rule 2. In the example illustrated in
FIG. 1, for example, “compression_de” stored at the 1st to
14th addresses is a non-matching string, and is formed of 14
characters. Therefore, the non-matching length is encoded
into “14” by the non-matching length encoder 15.

The non-matching string encoder 16 extracts the non-
matching string that has not been extracted as a matching
string by the matching string searching unit 12, and identi-
fies the second element of {non-matching length, non-
matching character string} representing the non-matching
string, according to Rule 2. In the example illustrated in FIG.
1, for example, “compression_de” stored in the positions
having the 1st to 14th addresses is a non-matching string.
Therefore, the non-matching character string is encoded into
“compression_de” by the non-matching length encoder 15.

The output buffer 17 encodes original data by using the
results of the matching length encoder 13, the matching
position encoder 14, the non-matching length encoder 15,
and the non-matching string encoder 16 so as to generate
compressed data that is a result of compression, and tem-
porarily stores the compressed data as needed. In the
example illustrated in FIG. 1, for example, the character
string “compression_decompression compression.”, which
is the original data, is encoded into “{14, compression_de}
(8, 1H{1, _}(11, 23)”.

FIG. 3 illustrates an example of a flow of a compression
process performed by a data compression apparatus in the
comparative example.

When processing is initiated, the matching string search-
ing unit 12 searches whether a matching string that is a
repeatedly appearing character string is included in a char-
acter string of original data in S100. When the process of this
step is finished, the process moves on to S102. The character
string of the original data may be a character string stored in
the input buffer 11.

In S102, the matching string searching unit 12 determines
whether a matching string has been detected. When the
determination result is “YES”, namely, when a matching

10

15

20

25

30

35

40

45

50

55

60

65

6

string has been detected, the process moves on to S104.
When the determination result is “NO”, namely, when a
matching string has not been detected, the process moves on
to S112.

In S104, the matching string searching unit 12 determines
whether a character string stored immediately before the
address of the first character of the matching string detected
in S102 is a non-matching string. When the determination
result is “YES”, namely, when the immediately preceding
character string is a non-matching string, the process moves
on to S106. When the determination result is “NO”, namely,
when the immediately preceding character string is not a
non-matching string, the process moves on to S108.

In S106, the non-matching length encoder 15 and the
non-matching string encoder 16 encode the non-matching
string that immediately precedes the matching string
detected in S102. An example of encoding is illustrated in
FIG. 1. When the process of this step is finished, the process
moves on to S108.

In S108, the matching length encoder 13 and the matching
position encoder 14 encode the matching string detected in
S102. An example of encoding is illustrated in FIG. 1. When
the process of this step is finished, the process moves on to
S110.

In S110, the output buffer 17 determines whether all
portions of the original data to be compressed have been
processed. When the determination result is “YES”, namely,
when all portions of the original data have been processed,
the compression process is finished. When the determination
result is “NO”, namely, when not all portions of the original
data have been processed, the process returns to S100.

When no matching strings have been detected in S102, the
process moves on to S112.

In S112, the non-matching length encoder 15 and the
non-matching string encoder 16 respectively extract the
length and the character string of the non-matching string
from which no matching strings have been detected. Infor-
mation relating to the length of the non-matching string and
information relating to the character string of the non-
matching string are temporarily stored in the non-matching
length encoder 15 and the non-matching string encoder 16,
respectively. These pieces of information are used in S106.
When the process of this step is finished, the process returns
to S100.

FIG. 4 illustrates examples of original data and com-
pressed data in the comparative example.

FIG. 4 illustrates a case in which original data is a
recurring character string. The length of a recurring charac-
ter string is referred to as a “carton”. Rules 1 and 2 described
above are also used in FIG. 6.

In FIG. 4, P(n) (where n is an integer) represents a break
between cartons.

As an example of a case where carton=1, FIG. 4 illustrates
a case where original data is “aaaaaaaaaab”.

In this case, “a” at the first address is a non-matching
string, and “aaaaaaaaa” at the 2nd to 10th addresses is a
matching string.

In a case where original data is “aaaaaaaaaab”, the
obtained compressed data is “{1, a}, (9, 1), {1, b}”. The
second element “1” of “(9, 1)” representing the matching
string in the compressed data corresponds to the carton.

As an example of a case where carton=2, FIG. 4 illustrates
a case where original data is “abababababc”. In this case,
“ab” at the 1st and 2nd addresses is a non-matching string,
and “abababab” at the 3rd to 10th addresses is a matching
string. The character “c” at the 11th address is a non-
matching string. The length of a recurring character string is

US 9,438,271 B2

7
2, and therefore the 2nd to 10th addresses are divided in
2-character units, and the original data is divided at positions
after the 4th and the 6th addresses in such a way that the
positions become P(1) and P(2), respectively.

In a case where original data is “abababababc”, the
obtained compressed data is “{2, ab}, (10, 2), {1, ¢}

As an example of a case where carton=3, FIG. 4 illustrates
a case where original data is “abcabcabcabed”. In this case,
“abc” at the 1st to 3rd addresses is a non-matching string,
and “abcabcabe” at the 4th to 12th addresses is a matching
string. The character “d” at the 13th address is a non-
matching string.

In a case where original data is “abcabcabcabed”, the
obtained compressed data is “{3, abc}, (9, 3), {1, d}”.

As an example of a case where carton=4, FIG. 4 illustrates
a case where original data is “abcdabcdabedabede”. In this
case, “abcd” at the 1st to 4th addresses is a non-matching
string, and “abcdabedabed” at the Sth to 16th addresses is a
matching string. The character “e” at the 17th address is a
non-matching string.

In a case where original data is “abcdabcdabedabede”, the
obtained compressed data is “{4, abcd}, (12, 4), {1, e}”.

As an example of a case where carton=7, FIG. 4 illustrates
a case where original data is “abcdefgabcdefgabedefgh”. In
this case, “abcdefg” at the 1st to 7th addresses is a non-
matching string, and “abcdefgabedefg™ at the 8th to 21st
addresses is a matching string. The character “h” at the 22nd
address is a non-matching string.

In a case where original data is “abcdefgabcdefgab-
cdefgh”, the obtained compressed data is “{7, abcdefg}, (14,
7), {1, h}”.

As an example of a case where carton=38, FIG. 4 illustrates
a case where original data is “abcdefghabedefghabedefghi”.
In this case, “abcdefgh™ at the 1st to 8th addresses is a
non-matching string, and “abcdefghabcdefgh™ at the 9th to
24th addresses is a matching string. The character “i” at the
25th address is a non-matching string.

In a case where original data is “abcdefghabedefghab-
cdefghi”, the obtained compressed data is “{8, abcdefgh},
(16, 8), {1, i}

A process of decompressing data that has been com-
pressed as a result of a process as illustrated in FIG. 3 is now
described with reference to FIG. 5.

The process illustrated in FIG. 5 may be performed by a
computer having the configuration illustrated in FIG. 18. A
computer 100 illustrated in FIG. 18 includes a Central
Processing Unit (CPU) 102, a memory, a Read Only
Memory (ROM) 104, and a Random Access Memory
(RAM) 106.

Assume that compressed data has been stored in the RAM
106 before processing is initiated. The decompression pro-
cess is performed in units of a string in the compressed data.
In the example illustrated in FIG. 1, for example, the
compressed data “{14, compression_de}(8, 14){1,}(11, 23)”
is sequentially decompressed in units of a portion in brack-
ets.

When processing is initiated, the CPU 102 determines
whether data being currently processed is a matching data in
S200. When the determination result is “YES”, namely,
when the data being currently processed is a matching string,
the process moves on to S202. When the determination
result is “NO”, namely, when the data being currently
processed is not a matching data, the process moves on to
S210.

In S202, the CPU 102 reads a matching length and the
starting position of the matching string from compressed

10

15

20

25

30

35

40

45

50

55

60

65

8

data of the matching string. When the process of this step is
finished, the process moves on to S204.

In S204, the CPU 102 determines whether a copy source
overlaps a copy destination.

An example in which a copy source overlaps a copy
destination is now described with reference to FIGS. 6A and
6B.

As illustrated in FIG. 6A, assume that a character string
of original data is a character string beginning with a
character string in which the character “a” is arranged ten
times, “aaaaaaaaaa”. This character string of the original
data is compressed according to Rules 1 and 2 described
above, as described below.

The character string “aaa” at the 1st address is a non-
matching string because no characters exist before this
character string. Accordingly, “{1, a}” is extracted as a
provisional non-matching string.

In a process of the character string “aaaaaaaaa” at the 2nd
to 9th addresses, this character string is identical with the
character string “aaaaaaaaa” at the 1st address, and therefore
this character string is determined to be a matching string
(see S102 of FIG. 3). It is further determined whether a
provisional non-matching string has been stored (see S104
of FIG. 3). Because the provisional non-matching string has
been stored, the non-matching string {1, a} is encoded
(S106). In addition, the character string “aaaaaaaaa” at the
2nd to 9th addresses is encoded. According to Rule 1
described above, the matching string is represented as
(matching length, starting position of matching string). In
this case, the matching length is “9”, which is the number of
addresses from the 2nd address to the 9th address. The
starting position of the matching string is located at the 1st
address, which is an address that precedes the 2nd address
by one, and therefore the starting position of the matching
string is “1”. Accordingly, the original data is encoded into
“{1, a}(9, 1)”, as illustrated in FIG. 6A. Consequently, the
obtained compressed data is “{1, a}(9, 1)”.

FIG. 6B is a diagram explaining an outline of a process of
decompressing the compressed data “{1, a}(9, 1)”.

In the decompression of the compressed data “{1, a}(9,
1)”, the portion “{1, a}” is first decompressed. As a result,
the character “a” is stored at the 1st address.

In the decompression of the next portion “(9, 1)”, an
operation of copying a character stored at an address that
precedes each address to a position having each of the
addresses is performed. Namely, decompression at the 3rd
address includes an operation of storing a character stored at
the 2nd address in a position having the 3rd address. Stated
another way, before decompression is performed at the 3rd
address, there is a wait for an operation of copying a
character stored at the 1st address to a position having the
2nd address to be finished.

In the example illustrated in FIG. 1, when the portion “(8,
14)” in the compressed data is decompressed, 8 characters
beginning with a character that precedes a matching string
represented as “(8, 14)” by 14 addresses are copied to
positions having the 15th to 22nd addresses. In this case, a
copy source does not overlap a copy destination.

As described above, in S204, the CPU 102 determines
whether a copy source overlaps a copy destination in the
decompression process, as illustrated in FIG. 5B, for
example. When the determination result is “YES”, namely,
when the copy source overlaps the copy destination, the
process moves on to S206. When the determination result is
“NO”, namely, when the copy source does not overlap the
copy destination, the process moves on to S208.

US 9,438,271 B2

9

In S206, the CPU 102 copies characters having the
matching length from the starting position of the matching
string. When the process of this step is finished, the process
moves on to S214.

In S208, the CPU 102 copies characters having the
matching length in order from the starting position of the
matching string in such a way that the copy source does not
overlap the copy destination. In the example illustrated in
FIG. 6B, one character “a” is copied from the starting
position of the matching string.

When it is determined in S200 that the data being cur-
rently processed is not a matching string, the process moves
on to S210.

In S210, the CPU 102 reads and decompresses a non-
matching length from compressed data of a non-matching
string according to Rule 2. When the process of this step is
finished, the process moves on to S212.

In S212, the CPU 102 reads and decompresses a non-
matching character string from the compressed data of the
non-matching string according to Rule 2.

As an example, the non-matching length “14” and the
non-matching character string “compression_de” can be
read from the portion “{14, compression_de}” in the com-
pressed data “{14, compression_de}(8, 14){1, _}(11,23)".
Then, “compression_de” is stored at the 1st to 14th
addresses. When the process of this step is finished, the
process moves on to S214.

In S214, the CPU 102 determines whether all portions of
the original data to be decompressed have been processed.
When the determination result is “YES”, namely, when all
portions of the compressed data have been processed, the
decompression process is finished. When the determination
result is “NO”, namely when not all portions of the com-
pressed data have been processed, the process returns to
S200.

As described above, in the comparative example, a copy
source may overlap a copy destination, as illustrated in FIG.
6B, for example. In the example illustrated in FIG. 6B,
copying is performed in the procedure of <step 1: copy the
first byte to the second byte> and <step 2: copy the second
byte to the third byte>. Before the process of step 1 is
finished, the process of step 2 is not performed, and copying
is performed in units of a length less than or equal to a
carton, for example, in one-byte units. As described above,
in order to employ high-speed multi-byte copying in decom-
pression, it is confirmed whether a copy source overlaps a
copy destination. When the copy source overlaps the copy
destination, a complicated process for performing copying
in units of a length less than or equal to a carton, for
example, in one-byte units, is needed.

EMBODIMENTS

In the embodiments descried below, in the [.Z77 algo-
rithm, a matching string is divided and encoded in such
away that a relative position is greater than a matching
length, namely, offset>length, where offset represents a
relative position, and length represents a matching length.
By performing compression as described above, the match-
ing string is divided in such a way that a copy source does
not overlap a copy destination, and consequently com-
pressed data can be generated that enables high-speed
decompression without performing conditional branch pro-
cessing in decompression. Stated another way, in order to
realize the decompression of compressed data in multi-byte
units, a matching string repeatedly appearing in original data
is subdivided and compressed in such a way that a copy

10

15

20

25

30

35

40

45

50

55

60

65

10

source does not overlap a copy destination in decompres-
sion, and as a result compressed data that can be decom-
pressed at high speed can be generated.

The term “overlap” may mean that the last address of a
copy source character string is located in a backward direc-
tion from the first address of a copy destination character
string.

FIG. 7 is an exemplary functional block diagram of a
compression apparatus that compresses original data so as to
generate compressed data.

A compression apparatus 20 includes an input buffer 21,
a matching string searching unit 22, a matching length
encoder 23, a matching position encoder 24, a non-matching
length encoder 25, a non-matching string encoder 26, an
output buffer 27, and a matching string dividing unit 28. The
compression apparatus 20 is different from the compression
apparatus 10 in the comparative example in that the match-
ing string dividing unit 28 is included.

The input buffer 21 receives, for example, data before
compression (original data) from outside, and temporarily
stores the original data, as needed.

The matching string searching unit 22 searches whether a
repeatedly appearing character string (a matching string) is
included in a character string of original data stored in the
input buffer 11, and extracts a matching string. When a
matching string is included, the matching string searching
unit 22 identifies the matching string. In the example illus-
trated in FIG. 1, for example, the character strings “com-
press” and “compression” appear a plurality of times, and
therefore these character strings are matching strings.

As described above, the matching string searching unit 22
extracts, as a matching string, a second character string
identical with the first character string from a character
string after the first character string in a character string of
data before compression, and identifies the length of the
matching string, and a relative position indicating how many
addresses the first character string precedes the second
character string by.

Then, the matching string dividing unit 28 divides the
matching string in such a way that the relative position is
greater than or equal to the matching length, namely, off-
setzlength.

As described above, the matching string dividing unit 28
extracts a third character string that has a length less than the
relative position from the second character string extracted
by the matching string searching unit.

Assume as an example that original data is “aaaaaaaaaab”.
In this example, the character “a” is stored at each of the 1st
to 10th addresses, and the character “b” is stored at the 11th
address.

As an example, the character string “aaaaaaaaa” (nine
“a”s) at the 2nd to 10th addresses of the character string
“aaaaaaaaaab” of original data can be divided into “a”+
“aa”’+“aaaa”+“aa”, as illustrated in FIG. 14. In other words,
the character string “aaaaaaaaa” is divided at positions P(1),
P(3), and P(7), namely, P(2"-1), in FIG. 4. As a result of
this, the matching string “a” at the 2nd address of the
original data “aaaaaaaaaab” has a matching length (length)
of' 1 and a relative position (offset) of 1, and therefore offset
length is established. The matching string “aa” at the 3rd to
4th addresses has a matching length (length) of 2 and a
relative position (offset) of 2, and therefore offset length is
established. The matching string “aaaa” at the 5th to 8th
addresses has a matching length (length) of 4 and a relative
position (offset) of 4, and therefore offset length is estab-
lished.

US 9,438,271 B2

11

As another example, the character string “aaaaaaaaa”
(nine “a”s) at the 2nd to 10th addresses of the character
string “aaaaaaaaaab” of the original data can be divided into
“a’+“a”+“aa”+““aaaaaa”, as illustrated in FIG. 14. In other
words, the character string “aaaaaaaaa” is divided at posi-
tions P(1), P(2), and P(4), namely, P(n+2), P(n+4), . . .,
P(n+2™), where n=(matching length+carton-1)+carton, in
FIG. 4. As a result of this, the matching string “a” at the 2nd
address of the original data “aaaaaaaaaab” has a matching
length (length) of 1 and a relative position (offset) of 1, and
therefore offset length is established. The matching string
“a” at the 3rd address has a matching length (length) of 1 and
a relative position (offset) of 2, and therefore offsetzlength
is established. The matching string “aa” at the 4th to S5th
addresses has a matching length (length) of 2 and a relative
position (offset) of 3, and therefore offsetzlength is estab-
lished. The matching string “aaaaa” at the 6th to 10th
addresses has a matching length (length) of 5 and a relative
position (offset) of 5, and therefore offsetzlength is estab-
lished.

The matching length encoder 23 and the matching posi-
tion encoder 24 respectively encode the first element and the
second element of (matching length, starting position of
matching string) representing each of the matching strings
obtained by the matching string dividing unit 28, according
to Rule 1.

As an example, when the character string “aaaaaaaaaa”
(nine “a”s) at the 2nd to 10th addresses of the character
string “aaaaaaaaaab” of the original data is divided into
“a’+“aa”+“aaaa”+“aa”, as illustrated in FIG. 14, the match-
ing string is encoded into “(1, 1) (2, 2) (4, 4) (2, 8)”.

As another example, when the matching string
“aaaaaaaaa” (nine “a”’s) at the 2nd to 10th addresses of the
character string “aaaaaaaaaab” of the original data is divided
into “a”+“a”+“aa”+“aaaaaa”, as illustrated in FIG. 15, the
matching string is encoded into “(1, 1) (1, 2) (2, 3) (5, 5)”.

The non-matching length encoder 25 extracts the length
of a non-matching string that has not been extracted as a
matching string by the matching string searching unit 22,
and encodes the first element of {non-matching length,
non-matching character string} representing the non-match-
ing string, according to Rule 2.

The non-matching string encoder 26 extracts a non-
matching string that has not been extracted as a matching
string by the matching string searching unit 22, and encodes
the second element of {non-matching length, non-matching
character string} representing the non-matching string,
according to Rule 2.

The output buffer 27 encodes the original data by using
results of the matching length encoder 23, the matching
position encoder 24, the non-matching length encoder 25,
and the non-matching string encoder 26 so as to generate
compressed data as a result of compression, and temporarily
stores the compressed data, as needed.

FIG. 18 illustrates an example of a configuration of a data
compression apparatus 200 according to the embodiments.

A computer 100 includes a Central Processing Unit (CPU)
102, a Read Only Memory (ROM) 104, and a Random
Access Memory (RAM) 106. The computer 100 further
includes a hard disk drive 108, an input device 110, a display
112, an interface device 114, and a recording medium
driving device 116. These components are connected to each
other via a bus line 118, and can communicate various pieces
of data under the control of the CPU 102.

10

15

20

25

30

35

40

45

50

55

60

65

12

The Central Processing Unit (CPU) 102 is a computing
device that controls the action of the entirety of the computer
100, and functions as a control processing unit of the
computer 100.

The Read Only Memory (ROM) 104 is a read-only
semiconductor memory in which a prescribed basic control
program has been stored. The CPU 102 can control the
actions of the respective components of the computer 100 by
reading and executing the basic control program at the time
of initiation of the computer 100.

The Random Access Memory (RAM) 106 is anon-tran-
sitory writable/readable semiconductor memory that is used
for a working storage area as needed when the CPU 102
executes various control programs.

The hard disk drive 108 is a storage in which the various
control programs executed by the CPU 102 or various pieces
of data are stored. The CPU 102 can perform the various
control processes described later by reading and executing a
prescribed control program stored in the hard disk drive 108.

The input device 110 is, for example, a mouse device or
a keyboard device. When the input device 110 is operated by
a user of an information processing device, the input device
110 obtains the input of various pieces of information
associated with the content of the operation, and transmits
the obtained input information to the CPU 102.

The display 512 is, for example, a liquid crystal display,
and displays various texts or images according to display
data transmitted from the CPU 102.

The interface device 114 manages communication of
various pieces of information between various devices con-
nected to the computer 100.

The recording medium driving device 116 is a device that
reads various control programs or data recorded in a remov-
able recording medium 120. The CPU 102 can be configured
to perform the various control processes described later by
reading and executing a prescribed control program
recorded in the removable recording medium 120 via the
recording medium driving device 116. Examples of the
removable recording medium 120 include a flash memory
equipped with a connector of the USB (Universal Serial
Bus) standard, a CD-ROM (Compact Disc Read Only
Memory), and a DVD-ROM (Digital Versatile Disc Read
Only Memory).

In order to configure an information processing device by
using the computer 100 having the configuration above, a
control program for causing the CPU 102 to perform the
processes of the above respective processing units is gen-
erated, for example. The generated control program has been
stored in the hard disk drive 108 or the removable recording
medium 120. The CPU 102 is given a prescribed instruction
s0 as to read and execute the control program. By doing this,
functions that the information processing device has are
provided by the CPU 102.

FIG. 8 illustrates an example of a flow of a compression
process performed by the data compression apparatus 20
according to the embodiments.

In a case in which the data compression apparatus 20 is a
general-purpose computer 100 as illustrated in FIG. 18, the
description below defines a control program for performing
the process described below. In other words, the description
below is also the description of a control program for
causing a general-purpose computer to perform the process
described below.

When processing is initiated, the matching string search-
ing unit 22 searches whether a matching string that is a
repeatedly appearing character string is included in a char-
acter string of original data in S300. When the process of this

US 9,438,271 B2

13

step is finished, the process moves on to S302. The character
string of the original data may be a character string stored in
the input buffer 21.

In S302, the matching string searching unit 22 determines
whether a matching string has been detected. When the
determination result is “YES”, namely, when a matching
string has been detected, the process moves on to S304.
When the determination result is “NO”, namely, when a
matching string has not been detected, the process moves on
to S306.

In S304, the non-matching length encoder 25 and the
non-matching string encoder 26 respectively extract the
length and the character string of a non-matching string in
which the matching string has not been detected. Then,
information relating to the length of the non-matching string
and information relating to the character string of the
non-matching string is temporarily stored in the non-match-
ing length encoder 25 and the non-matching string encoder
26, respectively. These items of information are used in
S106. When the process of this step is finished, the process
returns to S100.

When a matching string has not been detected in S302, the
process moves on to S306.

In S306, the matching string dividing unit 28 detects the
length of the matching string, namely, a matching length,
and the number of addresses by which a character string
identical with the matching string precedes the matching
string, namely, a relative position. In S306, the matching
string dividing unit 28 divides the matching string in such a
way that the relative position is greater than or equal to the
matching length, namely, relative position (offset) matching
length (length).

When the relative position is greater than or equal to the
matching length, namely, relative position (offset) matching
length (length) is established, the process of this step is not
performed.

In S308, the matching string dividing unit 28 determines
whether a character string located immediately before the
address of the first character of the divided matching string
is a non-matching string. When the determination result is
“YES”, namely, when the immediately preceding character
string is a non-matching string, the process moves on to
S310. When the determination result is “NO”, namely, when
the immediately preceding character string is not a non-
matching string, the process moves on to S312.

In S310, the non-matching length encoder 25 and the
non-matching string encoder 26 encode the non-matching
string immediately before the matching string divided as
needed in S306. When the process of this step is finished, the
process moves on to S312.

In S312, the matching length encoder 23 and the matching
position encoder 24 encode the matching string divided as
needed in S306. When the process of this step is finished, the
process moves on to S314.

In S314, the output buffer 27 determines whether all
portions of original data to be compressed have been pro-
cessed. When the determination result is “YES”, namely,
when all portions of original data have been processed, the
compression process is terminated. When the determination
result is “NO”, namely, when not all portions of original data
have been processed, the process returns to S300.

A process of decompressing data compressed as a result
of a process as illustrated in FIG. 8 is now described with
reference to FIG. 9.

The process illustrated in FIG. 9 may be performed, for
example, by a computer having the configuration illustrated
in FIG. 15.

10

15

20

25

30

35

40

45

50

55

60

65

14

Assume that compressed data has been stored in the RAM
106 before processing is initiated.

When processing is initiated, the CPU 102 determines
whether data being currently processed is a matching string
in S400. When the determination result is “YES”, namely,
when the data being currently processed is a matching string,
the process moves on to S402. When the determination
result is “NO”, namely, when the data being currently
processed is not a matching string, the process moves on to
S406.

In S402, the CPU 102 reads a matching length and a
starting position of the matching string from compressed
data of the matching string according to Rule 1. When the
process of this step is finished, the process moves on to
S404.

In S404, the CPU 102 copies a character string having the
matching length from the starting position of the matching
string. When the process of this step is finished, the process
moves on to S410.

When it is determined in S400 that the data being cur-
rently processed is not a matching string, the process moves
on to S406.

In S406, the CPU 102 reads and decompresses a non-
matching length from compressed data of a non-matching
string according to Rule 2. When the process of this step is
finished, the process moves on to S408.

In S408, the CPU 102 reads and decompresses a non-
matching character string from the compressed data of the
non-matching string according to Rule 2.

When the process of this step is finished, the process
moves on to S410.

In S410, the CPU 102 determines whether all portions of
original data to be decompressed have been processed.
When the determination result is “YES”, namely, when all
portions of compressed data have been processed, the
decompression process is terminated. When the determina-
tion result is “NO”, namely, when not all portions of
compressed data have been processed, the process returns to
S400.

As described above, the process of decompressing data
compressed as a result of the process as illustrated in FIG.
1s simplified, compared with the decompression process
illustrated in FIG. 4, and this allows a high-speed process.

EXAMPLES

Overlapping of a copy source and a copy destination
occurs in a recurring character string in which one of one
character, a two-character string, a three-character string, or
the like is repeated. Assume that, in the L.Z77 algorithm, a
matching string is searched for, and a relative position
(offset) and a matching length (length) are obtained. When
offset<length is established, the copy source overlaps the
copy destination, and therefore the matching string is
divided and encoded. Division does not always need to be
performed when offset<length is established; a minimum
distance of an overlapping portion may be specified in
advance as X, and division may be performed only when
offset<X is established.

Several methods of division are considered. The follow-
ing cases are described below.

(Ex1) Perform division at P(1), P(3), P(7), . . . , P(2"-1)
(where (2"-1)<n).

(Ex2) Perform division at (P(n+2), P(n+4), P(n+8), . . .,
P(n+2™)) (where n+2">1), where n=matching length+car-
ton-1)+carton.

US 9,438,271 B2

15

(Ex3) Specify a minimum distance X of an overlapping
portion and a minimum value N of a matching length, and
perform division at P(1), P(1+2), P(1+42+4), . . ., P(2"-1)
(where (2™-1)<n).

(Ex4) Set a minimum value of a matching length as N,
perform adjustment in such a way that one set of recurrence
is greater than or equal to N, and perform the above divisions
(Ex1) to (Ex3).

(Ex1) to (Ex3) described above are described below.

FIGS. 10A through 10C illustrate an example of a flow of
a compression process performed by a data compression
apparatus in examples.

In a case in which the data compression apparatus 20 is a
general-purpose computer 100 as illustrated in FIG. 15, the
description below defines a control program for performing
the process described below. In other words, the description
below is also the description of a control program for
causing a general-purpose computer to perform the process
described below.

When processing is initiated, the input buffer 21 resets a
current address position p_cur and a non-matching length
n_len in S500. Assume for example that p_cur=0, and
n_len=0. When the process of this step is finished, the
process moves on to S502.

In S502, the matching string searching unit 22 searches
for a matching string. Specifically, a matching length (len)
and a relative position (offset) are obtained. When the
process of this step is finished, the process moves on to
S504.

In S504, the matching string searching unit 22 determines
whether a matching string has been detected. When the
determination result is “YES”, namely, when a matching
string has been detected, the process moves on to S506.
When the determination result is “NO”, namely, when a
matching string has not been detected, the process moves on
to S532.

In S506, the matching string searching unit 22 updates the
current address position p_cur and the non-matching length
n_len. As an example, the current address position p_cur and
the non-matching length n_len are respectively incremented
by 1.

In S506, a head position adjusting process is performed.

The head position adjusting process is described with
reference to FIG. 11. Assume that a minimum value N of a
matching length has been specified in this process.

When processing is initiated, the matching string search-
ing unit 22 substitutes the relative position (offset) for a
variable 1 in S600. When the process of this step is finished,
the process moves on to S602.

In S602, the matching string searching unit 22 determines
whether the variable i1 is greater than or equal to the
minimum value N of the matching length. When the deter-
mination result is “YES”, namely, when the variable i is
greater than or equal to the minimum value N of the
matching length, the process moves on to S606. When the
determination result is “NO”, namely, when the variable i is
not greater than or equal to the minimum value N of the
matching length, the process moves on to S604.

In S606, the matching string searching unit 22 adds a
value of (i—offset) to the non-matching length n_len, and
also adds a value of (i—offset) to the current address
position p_cur. Further, the matching string searching unit
22 subtracts the value of (i—offset) from the matching
length len of the matching string. When the process of this
step is finished, the head position adjusting process is
terminated.

20

25

30

40

45

50

55

16

In S604, the matching string searching unit 22 adds a
value of offset to the variable i.

Returning now to FIG. 10A, in S508 that follows S506,
the matching string dividing unit 28 performs a matching
string dividing process.

The matching string dividing process is described with
reference to FIGS. 12A and 12B.

FIG. 12A illustrates a process in a case in which division
is performed at P(1), P(3), P(7), . . . , P(2"—1) (where
(2"—1)<n), as in Ex1 described above.

When processing is initiated, the matching string dividing
unit 28 resets a value of the last number e_num of a divided
matching string, and substitutes a value of the matching
length len of the matching string for a variable len2 of the
matching length of the matching string in S700. When the
process of this step is finished, the process moves on to
S702.

In S702, the matching string dividing unit 28 determines
whether offset>X or offset>len2 is established. When the
determination result is “YES”, namely, when offset>X or
offset>len2 is established, the process moves on to S704.
When the determination result is “NO”, namely, when
offset=X and offset<len2 are established, the process moves
on to S706.

In S704, the matching string dividing unit 28 substitutes
a value of offset for A_offset[e_num], which is a matching
position of the divided matching string, and also substitutes
a value of len2 for A_len[e_num], which is a matching
length of the divided matching string. When the process of
this step is finished, the process moves on to S706.

In S706, the matching string dividing unit 28 substitutes
the value of offset for A_offset[e_num], which is the match-
ing position of the divided matching string, and also sub-
stitutes the value of len2 for A_len[e_num], which is the
matching length of the divided matching string. The match-
ing string dividing unit 28 further updates the value of
e_num. As an example, the value of e_num is incremented
by 1. The value of offset is subtracted from the value of len2,
and the value of offset is updated. The value of offset is
updated, for example, by doubling the value. When the
process of this step is finished, the process returns to S702.

FIG. 12B illustrates a process in a case in which division
is performed at P(n+2), P(n+4), P(n+8), . . . , P(n+2™))
(where n+2">1), where n=(matching length+carton-1)=
relative position, as in Ex2 described above.

When processing is initiated, the matching string dividing
unit 28 calculates n=(len+carton-1)+offset, where len rep-
resents a matching length, and offset represents a relative
position, in S800. The matching string dividing unit 28
further resets a dummy variable i, and sets i to 0. When the
process of this step is finished, the process moves on to
S802.

In S804, the matching string dividing unit 28 updates a
value of n. As an example, the value is halved. Further, the
value of n is substituted for a division position P(i), and a
value of the dummy variable i is incremented by 1. When the
process of this step is finished, the process returns to S802.

In S806, the matching string dividing unit 28 resets the
variable len2 of the matching length of the matching string,
and the value of e_num, which is the last number of the
divided matching string. Namely, len2 is set to 0, and e_num
is set to 0. When the process of this step is finished, the
process moves on to S808.

In S808, the matching string dividing unit 28 determines
whether the value of the dummy variable i is less than 1.
When the determination result is “YES”, namely, when the
value of the dummy variable i is less than 1, the process

US 9,438,271 B2

17

moves on to S810. When the determination result is “NO”,
namely, when the value of the dummy variable i is greater
than or equal to 1, the process moves on to S812.

In S810, the matching string dividing unit 28 substitutes
a value of (len-len2) for A_len[e_num], which is the match-
ing length of the divided matching string. The matching
string dividing unit 28 also substitutes a value of (P(0)+1)x
offset for A_offset [e_num], which is the matching position
of the divided matching string. When the process of this step
is finished, the matching string dividing process is termi-
nated.

In S812, the matching string dividing unit 28 decrements
the value of the dummy variable i by 1. Further, the
matching string dividing unit 28 substitutes P(i)xoffset,
which is the product of the division position P(i) and the
relative position offset, for a dummy variable tmp, and also
substitutes the dummy variable tmp for A_len[e_num],
which is the matching length of the divided matching string,
and A_offset[e_num], which is the matching position of the
divided matching string. The matching string dividing unit
28 adds the value of tmp to the value oflen2, and increments
the value of e_num by 1. When the process of this step is
finished, the process returns to S808.

Returning now to FIG. 10A, in S510, the matching string
dividing unit 28 resets £ num, which is the first number of
the divided matching string, and n_len2, which is a non-
matching length of the divided matching string. Stated
another way, f_num is set to 0, and n_len2 is set to 0. When
the process of this step is finished, the process moves on to
S512.

In S512, the matching string dividing unit 28 performs a
matching length adjusting process.

The matching length adjusting process is described with
reference to FIG. 13.

When processing is initiated, the matching string dividing
unit 28 determines in S900 whether A_offset[f_num], which
is the matching position of the divided matching string, is
greater than or equal to a minimum value N of the matching
length. When the determination result is “YES”, namely,
when A_offset [f_num], which is the matching position of
the divided matching string, is greater than or equal to the
minimum value N of the matching length, the process moves
on to S904. When the determination result is “NO”, namely,
when A_offset [f_num], which is the matching position of
the divided matching string, is less than the minimum value
N of the matching length, the process moves on to S902.

In S902, the matching string dividing unit 28 adds a value
of A_offset[f_num] to a value of n_len, which is a non-
matching length of the divided matching string. Further, the
matching string dividing unit 28 increments the value of
f_num by 1. When the process of this step is finished, the
process returns to S900.

The first divided string is adjusted in the processes of
S900 and S902.

In S904, the matching string dividing unit 28 determines
whether A_len[e_num-1], which is the matching length of
the divided matching string, is greater than or equal to the
minimum value N of the matching length, or whether the
value of e_num is less than the value of f num. When the
determination result is “YES”, namely, when A_len[e_num-
1], which is the matching length of the divided matching
string, is greater than or equal to the minimum value N of the
matching length, or the value of e_num is less than the value
of f_num, the matching length adjusting process is finished.
When the determination result is “NO”, namely, when
A_offset[e_num-1], which is the matching position of the
divided matching string, is less than the minimum value N

25

30

40

45

55

18

of the matching length, and the value of e_num is greater
than or equal to the value of f num, the process moves on
to S906.

In S906, the matching string dividing unit 28 adds a value
of A_len[e_num-1], which is the matching length of the
divided matching string, to a value of n_len2, which is the
non-matching length of the divided matching string, and
decrements the value of e_num by 1.

Returning now to FIG. 10B, in S514, the matching string
dividing unit 28 determines whether the non-matching
length n_len is 0. When the determination result is “YES”,
namely, when the non-matching length n_len is 0, the
process moves on to S518. When the determination result is
“NO”, namely, when the non-matching length n_len is not 0,
the process moves on to S516.

In S516, the non-matching length encoder 25 and the
non-matching string encoder 26 encode a non-matching
string. Namely, a non-matching length n_len and non-
compressed data InBuf[(p_cur-n_len), . . ., (p_cur-1)] are
encoded. When the process of this step is finished, the
process moves on to S518.

In S518, the matching string dividing unit 28 determines
whether £ num, which is the first address number of the
divided matching string, is greater than e_num, which is the
last address number of the divided matching string. When
the determination result is “YES”, namely, when
f num>e_num is established, the process moves on to S520.
When the determination result is “NO”, namely, when
f num=e_num is established, the process moves on to S524.

In S524, the matching length encoder 23 and the matching
position encoder 24 encode a matching string. Stated
another way, A_len[f_num], which is a matching length of
a matching string, and A_offset[f num] are encoded. When
the process of this step is finished, the process moves on to
S526.

In S526, the matching length encoder 23 and the matching
position encoder 24 increment a value of { num, which is
the first address number of the divided matching string, by
1. When the process of this step is finished, the process
returns to S518.

In S520, the matching string dividing unit 28 substitutes
a value of n_len2, which is the non-matching length of the
divided matching string, for the non-matching length n_len,
and adds a value of the matching length len to the current
position p_cur. When the process of this step is finished, the
process moves on to S522.

In S522, the output buffer 27 determines whether all
portions of original data to be compressed have been pro-
cessed. When the determination result is “YES”, namely,
when all portions of original data have been processed, the
process moves on to S524. When the determination result is
“NO”, namely, when not all portions of original data have
been processed, the process returns to S502.

In S524, the matching string dividing unit 28 determines
whether the non-matching length n_len is 0. When the
determination result is “YES”, namely, when the non-
matching length n_len is 0, the process is finished. When the
determination result is “NO”, namely, when the non-match-
ing length n_len is not 0, the process moves on to S526.

In S526, the non-matching length encoder 25 and the
non-matching string encoder 26 encode a non-matching
string. In other words, the non-matching length n_len and
the non-compressed data InBuf] (p_cur-n_len), . . ., (p_cur-
1)] are encoded. When the process of this step is finished, the
process is finished.

According to the compression apparatus 20 and the above
compression method, in the LZ77 algorithm, when

US 9,438,271 B2

19

offset<length is established, where offset and length respec-
tively represent a relative position and a matching length of
a matching string, a copy source overlaps a copy destination,
and therefore the matching string is divided and encoded.

Further, a minimum distance of an overlapping portion
may be specified in advance as X, and division may be
performed only when offset<X is established.

Overlapping of the copy source and the copy destination
occurs in a recurring character string in which one of one
character, a two-character string, a three-character
string, . . ., is repeated. The length of one set of recurrence
coincides with a relative position (relative distance) between
the copy source and the copy destination. The first set is
encoded by using another code, and overlapping occurs in
the second set of recurrence and the sets that follow.

Accordingly, the copy source is prevented from overlap-
ping the copy destination by dividing a matching character
string at some or all of positions P(1)=carton, P(2)=cartonx
2, ..., P(n)=cartonxn (where P(n) is less than length), where
carton represents the length of one set of recurrence, from
the head of the matching character string.

An example in which division is performed at P(1), P(3),
P(7), . .., and P(2"-1) (where (2”-1)<n), and an example
in which division is performed at P(n+2), P(n+4),
P(n+8), . . . , and P(n+2™)) (where n+2">1), where
n=(matching length+carton-1)+carton, are illustrated in
FIGS. 14 and 15, respectively. In addition, a minimum value
N of the matching length may be specified in advance, and
a portion in which the matching length is less than or equal
to N as a result of the division of the matching character
string may be dealt with as a non-matching string.

FIG. 16 illustrates a case in which a minimum distance X
of an overlapping portion and a minimum value N of a
matching length are specified, and minimum distance X of
overlapping portion=8, and minimum value N of matching
length=3 in an example in which division is performed at
P(1), P(142), P(142+4), . . ., P(2"-1) (where (2"-1)<n). In
this case, a portion in which the matching length is less than
or equal to N as a result of the division of a matching
character string is dealt with as a non-matching string.

When the minimum value of the matching length is N,
one set of recurrence may be adjusted so as to be less than
or equal to N, and the above division may be performed.
Specifically, when relative position offset<N is established,
the head position of a matching string may be moved in a
backward direction by a maximum length of offsetxi in such
a way that N=offsetxi (where i is an integer value).

As an example, FIG. 17 illustrates an example in which,
when minimum value N of matching length=3 is estab-
lished, one set of recurrence is adjusted so as to be less than
or equal to N, and division is performed at P(1), P(1+2),
P(1+2+4), . . ., and P(2"-1) (where (2'-1)<n).

Division whereby a code amount is minimized may be
selected from among division at all of the positions P(1),
P(2), P(n), and divisions illustrated in FIGS. 14-17.

Example 1 (Ex1)

FIG. 14 illustrates an example of division at P(1), P(3),
P(7), . .., and P(2"-1) (where (2"-1)<n).

As an example of a case where carton=1, FIG. 14 illus-
trates a case where original data is “aaaaaaaaaab”.

In this case, “a” at the 1st address is a non-matching
string, and “aaaaaaaaa” at the 2nd to 10th addresses is a
matching string. The character “b” at the 11th address is a
non-matching string. The matching string “aaaaaaaaa” at the
2nd to 10th addresses is divided at portions after the first,

20

40

45

55

60

20

third, and seventh characters. In other words, the matching
string “aaaaaaaaa” is divided into ““a’+‘aa’+‘aaaa’+remain-
der”.

When original data is “aaaaaaaaaab”, the obtained com-
pressed data is “{1, a}(1, 1) (2, 2) (4, 4) (2, 8){1, b}”.

As an example of a case where carton=2, FIG. 14 illus-
trates a case where original data is “ababababac”. In this
case, “ab” at the 1st to 2nd addresses is a non-matching
string, and “abababa” at the 3rd to 10th addresses is a
matching string. The character “c” at the 11th address is a
non-matching string. “abababa” at the 3rd to 9th addresses
is divided at portions after the first and third cartons. In other
words, the matching string “abababab” is divided into ““‘ab’+
‘abab’+remainder”.

When original data is “ababababac”, the obtained com-
pressed data is “{2, ab}, (2, 2) (4, 4) (3, 8){1, c}”.

As an example of a case where carton=3, FIG. 14 illus-
trates a case where original data is “abcabcabcabd”. In this
case, “abc” at the 1st to 3rd addresses is a non-matching
string, and “abcabcab™ at the 4th to 11th addresses is a
matching string. The character “d” at the 12th address is a
non-matching string. “abcabcab” at the 4th to 11th addresses
is divided at a position after the first carton. In other words,
the matching string “abcabcabe” is divided into “‘abe’+
remainder”.

When original data is “abcabcabcabd”, the obtained com-
pressed data is “{3, abc}(3, 3) (5, 6){1, d}”.

As an example of a case where carton=4, FIG. 14 illus-
trates a case where original data is “abcdabcdabedabee”. In
this case, “abcd” at the 1st to 4th addresses is a non-
matching string, and “abcdabcdabed” at the Sth to 15th
addresses is a matching string. The character “e” at the 17th
address is a non-matching string. “abcdabedabe” at the Sth
to 15th addresses is divided at a position after the first carton.
In other words, the matching string “abcdabedabe” is
divided into “‘abcd’+remainder”.

When original data is “abcdabcdabedabede”, the obtained
compressed data is “{4, abcd}(4, 4) (7, 8){1, e}”.

As an example of a case where carton=7, FIG. 14 illus-
trates a case where original data is “abcdefgabcdefgab-
cdeth”. In this case, “abcdefg” at the 1st to 7th addresses is
a non-matching string, and “abcdefgabedef” at the 8th to
20th addresses is a matching string. The character “h” at the
21th address is a non-matching string. “abcdefgabedef” at
the 8th to 20th addresses is divided at a position after the first
carton. In other words, the matching string “abcdefgabedet™
is divided into “abcdefg’+remainder”.

When original data is “abcdefgabedefgabedeth”, the
obtained compressed data is “{7, abedefg} (7, 7) (6, 14) {1,
h}”.

As an example of a case where carton=8, FIG. 14 illus-
trates a case where original data is “abcdefghabedefghab-
cdefgi”. In this case, “abcdefgh™ at the 1st to 8th addresses
is a non-matching string, and “abcdefghabedefg™ at the 9th
to 24th addresses is a matching string. The character “i” at
the 25th address is a non-matching string. “abcdefghab-
cdefg” at the 9th to 23rd addresses is divided at a position
after the first carton. In other words, the matching string
“abcdefghabedefg” is divided into ““‘abcdefgh’+remainder”.

When original data is “abcdefghabedefghabedefgi”, the
obtained compressed data is “{8, abcdefgh} (8, 8) (7, 16) {1,

i}
Example 2 (Ex2)
FIG. 15 illustrates an example in which division is per-

formed at P(n+2), P(n+4), P(n+8), . . ., and P(n+2")) (where
n+2">1), where n=(matching length+carton—1)+carton.

US 9,438,271 B2

21

As an example of a case where carton=1, FIG. 15 illus-
trates a case where original data is “aaaaaaaaaab”.

The matching string “aaaaaaaaa” at the 2nd to 10th
addresses is divided. In this case, n=(9+1-1)=1=9 is estab-
lished, and therefore division is performed at P(4), P(2), and
P(1). In other words, the matching string “aaaaaaaaa” is
divided into “‘a’+‘a’+‘aa’+remainder”.

When original data is “aaaaaaaaaab”, the obtained com-
pressed data is “{1, a}(1, 1) (1, 2) (2, 3) (5, 5){1, b}”.

As an example of a case where carton=2, FIG. 15 illus-
trates a case where original data is “ababababababc”. In this
case, “ab” at the 1st to 2nd addresses is a non-matching
string, and “ababababa” at the 3rd to 11th addresses is a
matching string. The character “c” at the 12th address is a
non-matching string. In this case, n=(9+2-1)+2=5 is estab-
lished, and therefore division is performed at P(2) and P(1).
In other words, the matching string “ababababab” is divided
into ““ab’+‘ab’+remainder”.

When original data is “ababababababc™, the obtained
compressed data is “{2, ab}, (2, 2) (2, 4) (5, H){1, ¢}

As an example of a case where carton=3, FIG. 15 illus-
trates a case where original data is “abcabcabcabd”. In this
case, “abc” at the 1st to 3rd addresses is a non-matching
string, and “abcabcab” at the 4th to 11th addresses is a
matching string. The character “d” at the 12th address is a
non-matching string. In this case, n=(8+3-1)+3=3 is estab-
lished, and therefore division is performed at P(1). In other
words, the matching string “abcabcab™ is divided into
“‘abc’ +remainder”.

When original data is “abcabcabcabd”, the obtained com-
pressed data is “{3, abc}(3, 3) (5, 6){1, d}”.

As an example of a case where carton=4, FIG. 15 illus-
trates a case where original data is “abcdabcdabedabee”. In
this case, “abcd” at the 1st to 4th addresses is a non-
matching string, and “abcdabcdabe” at the Sth to 15th
addresses is a matching string. The character “e” at the 16th
address is a non-matching string. In this case, n=(11+4-1)+
4=3 is established, and therefore division is performed at
P(1). In other words, the matching string “abcdabcdabe™ is
divided into “‘abcd’+remainder”.

When original data is “abcdabedabedabee”, the obtained
compressed data is “{4, abcd}(4, 4) (7, 8){1, e}”.

As an example of a case where carton=7, FIG. 15 illus-
trates a case where original data is “abcdefgabcdefgab-
cdeth”. In this case, n=(11+7-1)+7=2 is established, and
therefore the matching string “abcdefgabedef” is divided
into ““abcdefg’+remainder”.

When original data is “abcdefgabcdefgabedeth”, the
obtained compressed data is “{7, abcdefg} (7, 7) (6, 14) {1,
h}”.

As an example of a case where carton=38, FIG. 15 illus-
trates a case where original data is “abcdefghabedefghab-
cdefgi”. In this case, “abcdefgh” at the 1st to 8th addresses
is a non-matching string, and “abcdefghabedefg” at the 9th
to 23rd addresses is a matching string. The character “1” at
the 24th address is a non-matching string. In this case,
n=(15+8-1)+8=2 is established, and therefore the matching
string “abcdefghabedefgh™ is divided into “‘abedefgh’+
remainder”.

When original data is “abcdefghabedefghabedefgi™, the
obtained compressed data is “{8, abcdefgh} (8, 8) (7, 16) {1,

i}
Example 3 (Ex3)

FIG. 16 illustrates an example in which a minimum
distance X of an overlapping portion and a minimum value

10

15

20

25

30

35

40

45

50

55

60

65

22

N of a matching length are specified, and division is per-
formed at P(1), P(142), P(142+4), . . ., and P(2"-1) (where
(2”-1)<n). FIG. 16 illustrates a case where minimum dis-
tance X of overlapping portion=8, and minimum value N of
matching length=3. In this case, a portion in which the
matching length is less than or equal to N as a result of the
division of a matching character string is dealt with as a
non-matching string.

As an example of a case where carton=1, FIG. 16 illus-
trates a case where original data is “aaaaaaaaaab”.

In this case, “a” at the 1st address is a non-matching
string, and “aaaaaaaaa” at the 2nd to 10th addresses is a
matching string. The character “b” at the 11th address is a
non-matching string. The matching string “aaaaaaaaa” at the
2nd to 10th addresses is divided at portions after the first,
third, and seventh characters. In order to establish minimum
value N of matching length=3, the original data
“aaaaaaaaaab” is divided into “‘aaaa’+‘aaaa’+‘aab’”.

As a result, the obtained compressed data is “{4, aaaa}(4,
4){3, aab}”.

As an example of a case where carton=2, FIG. 16 illus-
trates a case where original data is “abababababc”. In this
case, “ab” at the 1st to 2nd addresses is a non-matching
string, and “abababab” at the 3rd to 10th addresses is a
matching string. The character “c” at the 11th address is a
non-matching string. “abababab” at the 3rd to 10th
addresses is divided at positions after the first and third
cartons. In order to establish minimum value N of matching
length=3, the original data “abababababc” is divided into
“‘abab’+‘abab’+‘abab’+‘c’”.

Accordingly, the obtained compressed data is “{4, abab}
(4,4)(4,8) {1, c}”. As an example of a case where carton=3,
FIG. 16 illustrates a case where original data is “abcabcab-
cabcd”. In this case, “abc” at the 1st to 3rd addresses is a
non-matching string, and “abcabcabe” at the 4th to 12th
addresses is a matching string. The character “d” at the 13th
address is a non-matching string. “abcabcabe™ at the 4th to
12th addresses is divided at a position after the first carton.
In order to establish minimum value N of matching
length=3, the original data “abcabcabcabed” is divided into
“‘abc’+‘abe’+‘abe’+d””.

As aresult, the obtained compressed data is “{3, abc} (3,
3) (6, 6) {1, d}”.

As an example of a case where carton=4, FIG. 16 illus-
trates a case where original data is “abcdabedabedabede”. In
this case, “abcd” at the 1st to 4th addresses is a non-
matching string, and “abcdabcdabed” at the 5th to 16th
addresses is a matching string. The character “e” at the 17th
address is a non-matching string. “abcdabedabed” at the Sth
to 16th addresses is divided at a position after the first carton.
In order to establish minimum value N of matching
length=3, the original data “abcdabcdabedabede™ is divided
into ““abcd’+‘abed’+‘abedabed’+‘e’”. As a result, the
obtained compressed data is “{4, abcd}(4, 4) (8, 8){1, e}”.

As an example of a case where carton=7, FIG. 16 illus-
trates a case where original data is “abcdefgabcdefgab-
cdeth”. In this case, “abcdefg” at the 1st to 7th addresses is
a non-matching string, and “abcdefgabedefg™ at the 8th to
21st addresses is a matching string. The character “h” at the
22nd address is a non-matching string. “abcdefgabedef” at
the 8th to 21st addresses is divided at a position after the first
carton. In order to establish minimum value N of matching
length=3, the original data “abcdefgabcdefgabedefgh” is
divided into “‘abcdefg’+‘abedefg’+ abedef”+h’”.

As a result, the obtained compressed data is “{7, abcdefg}
(7, 7) (6, 14) {1, h}”.

US 9,438,271 B2

23

As an example of a case where carton=38, FIG. 16 illus-
trates a case where original data is “abcdefghabedefghab-
cdefgi”. In this case, “abcdefgh” at the 1st to 8th addresses
is a non-matching string, and “abcdefghabedefg” at the 9th
to 23rd addresses is a matching string. The character “1” at
the 24th address is a non-matching string. In this case, the
carton (=8) is greater than or equal to the minimum distance,
and therefore division is not performed.

Accordingly, the obtained compressed data is “{8,
abcdefgh} (15, 8){1, i}”.

Example 4 (Ex4)

FIG. 17 illustrates an example in which the first address
is adjusted in such a way that one set of recurrence is greater
than or equal to the minimum value N(=3) of the matching
length.

In a case where carton=1, the position of the first address
of'a matching string is adjusted in such a way that carton=3.

The original data “aaaaaaaaaab” is divided into “‘aaa’+
‘aaa’+‘aaaa’+b’”.

As a result, the obtained compressed data is “{3, aaa} (3,
3) 4, 6) {1, b}

In a case where carton=2, the position of the first address
of'a matching string is adjusted in such a way that carton=4.

When original data is “ababababac”, the original data is
divided into “‘abab’+‘abab’+‘aba’+‘c’”.

As aresult, the obtained compressed data is “{4, abab} (4,
4) (3,8) {1, ¢}”.

In a case where carton=3, the carton (=3) is greater than
or equal to the minimum value of the matching length, and
therefore the head position is not adjusted.

When original data is “abcabcabcabd”, the obtained com-
pressed data is “{3, abc}(3, 3) (5, 6){1, d}”.

All examples and conditional language provided herein
are intended for the pedagogical purposes of aiding the
reader in understanding the invention and the concepts
contributed by the inventor to further the art, and are not to
be construed as limitations to such specifically recited
examples and conditions, nor does the organization of such
examples in the specification relate to a showing of the
superiority and inferiority of the invention. Although one or
more embodiments of the present invention have been
described in detail, it should be understood that the various
changes, substitutions, and alterations could be made hereto
without departing from the spirit and scope of the invention.

What is claimed is:
1. A data compression apparatus comprising:
a memory; and
a processor that:
extracts a second character string as a matching string
from a character string after a first character string in
a character string of data before compression that is
stored in the memory, the second character string
being identical with the first character string, and
identifies a length of the matching string, and a
relative position indicating how many addresses the
first character string precedes the second character
string by;
extracts a third character string having a length that is
less than the relative position from the extracted
second character string;
encodes a length of the third character string; and
encodes the relative position.
2. The data compression apparatus according to claim 1,
wherein

5

10

15

20

25

30

35

40

45

50

55

[

0

65

24

when the relative position is less than a prescribed value,
the processor extracts the third character string from the
second character string.

3. The data compression apparatus according to claim 1,
wherein

the processor further performs a process that includes:

extracting, as a non-matching character string, a char-
acter string that does not include the second charac-
ter string identical with the first character string after
the first character string in the character string of the
data before compression, or a character string that
the second character string having a length that is
less than a prescribed length; and

extracting, when the length of the third character string
is less than a prescribed value, as the non-matching
string or a portion of the non-matching string, a
maximum value that is a multiple of the length of the
third character string, and that does not exceed the
prescribed value.

4. The data compression apparatus according to claim 1,
wherein

the processor defines, as a carton, a minimum unit of

recurrence in a recurring character string included in
the matching string, and divides the second character
string at some or all of positions that each correspond
to an integral multiple of the carton from a head of the
second character string.

5. The data compression apparatus according to claim 4,
wherein

the processor divides the second character string at some

or all of positions that each correspond to 2"-1 (where
m is an integer) with the carton as a unit from the head
of the second character string.

6. The data compression apparatus according to claim 4,
wherein

when n=(length+carton—1)+carton is established, where

length represents a matching length, and carton repre-
sents a length of the carton, the processor divides the
second character string at some or all of positions that
each correspond to n+2" (where m is an integer) with
the carton as a unit from the second character string.

7. A data compression method performed by a computer,
the data compression method comprising:

extracting a second character string as a matching string

from a character string after a first character string in a
character string of data before compression that is
stored in a memory, the second character string being
identical with the first character string, and identifying
a length of the matching string, and a relative position
indicating how many addresses the first character string
precedes the second character string by;

extracting a third character string having a length that is

less than the relative position from the extracted second
character string;

encoding a length of the third character string; and

encoding the relative position.

8. A computer-readable recording medium having stored
therein a program for causing a computer to execute a
process comprising:

extracting a second character string as a matching string

from a character string after a first character string in a
character string of data before compression that is
stored in a memory, the second character string being
identical with the first character string, and identifying
a length of the matching string, and a relative position
indicating how many addresses the first character string
precedes the second character string by;

US 9,438,271 B2
25 26

extracting a third character string having a length that is
less than the relative position from the extracted second
character string;

detecting and encoding a length of the third character
string; and 5

encoding the relative position.

#* #* #* #* #*

